UCW Rear Wing Kit - Porsche 991 GT3 https://www.verus-engineering.com/web/image/product.template/1160/image_1920?unique=3c4629c

3,195.00 3195.0 USD 3,195.00 ​ 

3,195.00 ​ 

Not Available For Sale

    This combination does not exist.

    OVERVIEW

    The UCW rear wing is a great addition to your 991 GT3 to increase downforce significantly in the rear, increase confidence on track, and reduce lap times.

    Verus Engineering developed the UCW rear wing to bridge the gap between our swan neck high-efficiency rear wing and our 300mm V1X airfoil.  With the 250mm curved chord, the UCW makes more downforce than the high-efficiency rear wing and significantly more downforce than similarly sized competitor wings.

    Utilizing state-of-the-art analysis software during the R&D process, we optimized the airfoil for performance for the given build volume which is derived from the V1X.  Further utilizing CFD, we ensured the rear wing sees adequate airflow while installed and performs well.

    During the design process; we utilized in-house scan data.  This results in a product that features a near OEM fit and finish.

    The UCW wing is the perfect addition to the track goer who requires a large bump in rear downforce to balance out a significant front aero package.

    UCW Wings are assembled per order and will ship within 5 business days from receipt of order.

    WHAT IS INCLUDED

    • Carbon Rear Wing Element, 250mm Chord
    • Carbon Endplate (2)
    • Machined Aluminum Wing Mount (2)
    • Machined Aluminum Wing Upright (4)
    • Hardware Kit, Includes All Hardware Necessary for Install
    PART NUMBER


    A0211A

    INSTALL MANUAL AND DATA



    INFORMATIVE PACKET


    INSTALL MANUAL

    INSTALL VIDEO

    Features:

     

    - Optimized Airfoil Using ANSYS Adjoint Solver

    - Improved Efficiency (L/D)

    - Increased Downforce

    - Bolts to OEM Trunk In Place of OEM Unit

    - Capable of Generating and Withstanding 500+lbs of Downforce

    - Capable of Balancing Out Significant Front Aerodynamic Systems


    Features:

     

    - Optimized Airfoil Using ANSYS Adjoint Solver

    - Improved Efficiency (L/D)

    - Increased Downforce

    - Bolts to OEM Trunk In Place of OEM Unit

    - Capable of Generating and Withstanding 500+lbs of Downforce

    - Capable of Balancing Out Significant Front Aerodynamic Systems



    Specifications:


    Carbon Fiber Rear Wing - 2x2 Twill Pre-preg carbon, Autoclave Cured, Automotive High-Gloss Clear

    - Machined Billet Aluminum Uprights

    - Machined Billet Aluminum Trunk Mounts

    - Stainless Hardware Throughout


    Specifications:


    Carbon Fiber Rear Wing - 2x2 Twill Pre-preg carbon, Autoclave Cured, Automotive High-Gloss Clear

    - Machined Billet Aluminum Uprights

    - Machined Billet Aluminum Trunk Mounts

    - Stainless Hardware Throughout



    Science:


    The Verus Engineering UCW Rear Wing was specifically designed for the 991 GT3 enthusiast who wants more rear-end downforce.  The wing has the capability of operating and generating downforce from 0 to 15 degrees angle of attack.  As part of our Ventus 3 aerodynamic kit, the rear wing, and aero kit adds a significant amount of downforce to the car to help reduce lap times and increase corner speed.

    Our CFD data and our real-world experimental data match up quite well. The wing hit all the major goals we set forth to achieve first in our CFD simulations and then with our real-world testing. The strong correlation between CFD data and real-world testing validates both our CFD analysis approach and the wing’s performance.


    Science:


    The Verus Engineering UCW Rear Wing was specifically designed for the 991 GT3 enthusiast who wants more rear-end downforce.  The wing has the capability of operating and generating downforce from 0 to 15 degrees angle of attack.  As part of our Ventus 3 aerodynamic kit, the rear wing, and aero kit adds a significant amount of downforce to the car to help reduce lap times and increase corner speed.

    Our CFD data and our real-world experimental data match up quite well. The wing hit all the major goals we set forth to achieve first in our CFD simulations and then with our real-world testing. The strong correlation between CFD data and real-world testing validates both our CFD analysis approach and the wing’s performance.


     

     

    { "@context": "https://schema.org", "@type": "VideoObject", "name": "What Do Front Splitters Actually Do?", "description": "Eric from Verus Engineering explains the function and benefits of front splitters in automotive design, detailing how they produce downforce and improve vehicle performance.", "thumbnailUrl": "https://i.ytimg.com/vi/PYJYN_s9Uqk/hqdefault.jpg", "uploadDate": "2024-03-09", "duration": "PT9M49S", "publisher": { "@type": "Organization", "name": "Verus Engineering", "logo": { "@type": "ImageObject", "url": "https://www.verus-engineering.com/logo.png" } }, "contentUrl": "https://www.youtube.com/watch?v=PYJYN_s9Uqk", "embedUrl": "https://www.youtube.com/embed/PYJYN_s9Uqk" }